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I. IMPLEMENTATION DETAILS

In this section, we mainly introduce network architectures
and training details.

A. Network Architecture

U-Net based network. We start with our U-Net based
network depicted in Tab. I. This network is used for both
the Shading Bases Module, the Albedo Estimation Module
and the Rendering Module. Different from that in the main
paper, the Albedo Estimation Module here includes h and
t for simplicity. The U-Net network first processes its input
using two convolutional layers. These two layers are used to
extract general images features while preserving the image’s
original resolution. Following the two convolutional layers, we
use a series of Residual Dense Blocks (RDBs). The dense
connections in RDBs allow for information to be received
from each previous layer. Consequently, RDBs are able to
preserve the number of channels at a given layer, which
facilitates collective features to be reused. We use a total of
two RDBs per layer, for a total of three layers. After each pair
of RDBs, we double the number of channels and down-sample
the feature maps by a factor of two. Prior to the down-sampling
operation, a 1x1 convolution is used to double the number of
channels.

Our Global Attention Block (GAB), which we use around
the network’s bottleneck, is composed of 6 transformer layers.
Note that the GAB is only used in the Shading Bases Module.
The GAB takes features from the encoder, which are first
collapsed across spatial dimensions. The resulting tensor has
a size of N × S, where N =

(
H
16 × W

16

)
, and S is the

dimension of the embedding. For each transformer layer, we
use 8 attention heads and an internal representation of size
512. The decoder part of our U-Net takes the features from
the GAB as input. These features are first reshaped back to
their pre-GAB shape and then fed to the decoder. The decoder
is composed of up-sampling blocks followed by convolutional
layers. Skip connections are used between the encoder and
decoder.

The default U-Net based network architecture depicted in
Tab. I is adopted as the Shading Bases Module. The Albedo
Estimation Module and the Rendering Module are slightly
different from the default U-Net based network architecture.
Both the Shading Bases Module and the Albedo Estimation
Module take an unharmonized input image of three channels.
The Rendering Module accepts multiple inputs of twenty five

channels (i.e., a shading image of three channels, albedo
feature of sixteen channels, an input unharmonized image of
three channels, and a background image of three channels).
The output for the Shading Bases Module is a set of shading
bases of K channels, where K is set to 32. The outputs of the
Albedo Estimation Module and the Rendering Module are an
albedo RGB image and a rendered RGB image, respectively.
Moreover, the chns and n-l of both the Albedo Estimation
Module and the Rendering Module within the U-Net based
network are half those of the Shading Bases Module, with the
aim of reducing parameters.

Illumination network. The illumination network is used for
both the Illumination Encoder Module and the Background
Illumination Estimation Module. The illumination network
depicted in Tab. II shares the same structure as that of our
U-Net based network’s encoder. But the illumination network
does not make use of the GAB. We also use an additional pair
of RDBs. Following the RDBs, we use a 1x1 convolutional
layer. We then use an adaptive average pooling layer to average
each feature map separately. Finally, three 1x1 convolutional
layers, which are equivalent to three fully-connected layers,
are used to process the resulting feature maps and produce
the illumination descriptor.

B. Training Details

Training SOTA models. All competing methods are re-
trained from scratch on our dataset following instructions
provided by the authors. Except for [1], the other methods
[2]–[4] are trained with an image resolution of 512x512. Note
that the model [1] only supports training on images of a
specific resolution (i.e., 256x256), and the other models [2]–
[4] only support training on images of particular resolutions
(e.g., 256x256 or 512x512). Each model is trained on a single
RTX TITAN. The training losses of these methods are shown
in Fig. 1. We report their results on the test set when the
training losses converge. During the testing phase, only [1] is
tested with a resolution of 256x256, and the other models are
tested with a resolution of 512x512.

Training our model. Our model is trained in two main
stages. During the first stage, we aim to learn our illumination
descriptors. The second stage is trained with the objective to
infer the illumination descriptor from the background images.
Our model is trained with an original resolution of 480x640.
For both stages, we use Adam [5] with a learning rate of 1e-
4 and betas = (0.9, 0.999) as our optimization algorithm. In
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TABLE I
OUR DEFAULT U-NET BASED NETWORK ARCHITECTURE. WE USE THIS

ARCHITECTURE FOR BOTH THE SHADING MODULE AND ALBEDO
ESTIMATION MODULE. HERE, K IS THE KERNEL SIZE, S THE STRIDE, D
THE KERNEL DILATION, P THE IMAGE PADDING. CHNS AND INPUT ARE

THE NUMBER OF INPUT/OUTPUT CHANNELS AND THE INPUT TO THE
LAYER. FOR RDBS AND THE GAB, N-L IS THE NUMBER OF LAYERS, G-R
IS THE GROWTH RATE, E-S IS THE EMBEDDING SIZE, N-H IS THE NUMBER
OF HEAD AND I-R IS THE INTERNAL REPRESENTATION SIZE. δ DENOTES

RECTIFIED LINEAR ACTIVATION FUNCTION. NOTE THAT THE GAB IS
ONLY USED IN THE SHADING MODULE.

Layers Parameters
k s d p chns input

conv3x31 3 1 1 1 4/32 Iin
conv3x32 3 1 1 1 32/32 δ(conv3x31)
Pool1 2 1 - 0 32/32 δ(conv3x32)

k s d chns n-l g-r input
RDB1,1 3 1 1 32/32 8 16 Pool1
RDB1,2 3 1 1 32/32 8 16 RDB1,1

k s d p chns input
conv1x11 1 1 1 0 32/64 RDB1,2

Pool2 2 1 - 0 64/64 conv1x11
k s d chns n-l g-r input

RDB2,1 3 1 1 64/64 8 16 Pool2
RDB2,2 3 1 1 64/64 8 16 RDB2,1

k s d p chns input
conv1x12 1 1 - 0 64/128 RDB2,2

Pool3 2 1 - 0 128/128 conv1x12
k s d chns n-l g-r input

RDB3,1 3 1 1 128/128 8 16 Pool3
RDB3,2 3 1 1 128/128 8 16 RDB3,1

k s d p chns input
conv1x13 1 1 - 0 128/256 RDB3,2

Pool4 2 1 - 0 256/256 conv1x13
e-s n-l n-h i-r input

GAB 256 6 8 512 Pool4
k s d p chns input

conv3x33 3 1 1 1 256/128 GAB
Up1 - - - - - conv3x33
conv1x14 1 1 - 0 512/256 Up1 + RDB3,2 + RDB3,1

conv3x34 3 1 1 1 256/128 δ(conv1x14)
Up2 - - - - - δ(conv3x34)
conv1x15 1 1 - 0 256/128 Up2 + RDB2,2 + RDB2,1

conv3x35 3 1 1 1 128/64 δ(conv1x15)
Up3 - - - - - δ(conv3x35)
conv1x16 1 1 - 0 128/64 Up3 + RDB1,2 + RDB1,1

conv3x36 3 1 1 1 64/32 δ(conv1x16)
Up4 - - - - - δ(conv3x36)
conv3x37 3 1 1 1 64/32 Up4 + conv3x32
conv3x38 3 1 1 1 32/32 δ(conv3x37)

TABLE II
OUR ILLUMINATION NETWORK ARCHITECTURE. WE USE THIS

ARCHITECTURE FOR BOTH THE BACKGROUND ILLUMINATION
ESTIMATION MODULE AND ILLUMINATION ENCODER MODULE.

Layers Parameters
k s d p chns input

conv3x31 3 1 1 1 3/32 Iin
conv3x32 3 1 1 1 32/32 δ(conv3x31)
Pool1 2 1 - 0 32/32 δ(conv3x32)

k s d chns n-l g-r input
RDB1,1 3 1 1 32/32 8 16 Pool1
RDB1,2 3 1 1 32/32 8 16 RDB1,1

k s d p chns input
conv1x11 1 1 1 0 32/64 RDB1,2

Pool2 2 1 - 0 64/64 conv1x11
k s d chns n-l g-r input

RDB2,1 3 1 1 64/64 8 16 Pool2
RDB2,2 3 1 1 64/64 8 16 RDB2,1

k s d p chns input
conv1x12 1 1 - 0 64/128 RDB2,2

Pool3 2 1 - 0 128/128 conv1x12
k s d chns n-l g-r input

RDB3,1 3 1 1 128/128 8 16 Pool3
RDB3,2 3 1 1 128/128 8 16 RDB3,1

k s d p chns input
conv1x13 1 1 - 0 128/256 RDB3,2

Pool4 2 1 - 0 256/256 conv1x13
k s d chns n-l g-r input

RDB4,1 3 1 1 128/128 8 16 Pool4
RDB4,2 3 1 1 128/128 8 16 RDB4,1

k s d p chns input
conv1x14 1 1 - 0 128/256 RDB4,2

AdaptiveAvgPool - - - - 256/256 conv1x14
k s d p chns input

conv1x15 1 1 - 1 256/128 AdaptiveAvgPool
conv1x16 1 1 - 1 128/64 δ(conv1x15)
conv1x17 1 1 - 1 64/96 δ(conv1x16)

Fig. 1. The training losses of SOTA models.

addition, to fairly compare our results against these competing
methods, during the quantitative evaluation phase we resize all
our images to a resolution of 512x512, so as to match them
with those produced by competing methods.

II. MORE EXPERIMENTS AND RESULTS

In this section, we present more experiments and results to
validate the effectiveness of our method.

A. More Qualitative Results
As shown in Fig. 2, Fig. 3, Fig. 4, and Fig. 5, we provide

more qualitative results on four sub-datasets. We execute our
method on representative images and compare our results
against those produced by competing methods.

Our method produces results that are more realistic, where
the foreground is more compatible with the background image.
For example, in third column of Fig. 2, the foreground object
appears to be taken from a sunny scene, where the main
illumination is behind the lady. But the background image
indicates that its primary illumination is located on the right
side of the image, as is evident from shadows of the trees
in the background. As shown in close-up details, our method
produces results that are consistent with the background il-
lumination. In contrast, the harmonized results produced by
competing methods such as RainNet and DoveNet still retain
the original illumination effects.

In the second column of Fig. 3, the foreground object of
the input composite image appears to be illuminated from the
left of the image, as is evident on the boy’s face. Given that
the background is cloudy, the resulting harmonized foreground
should be under a smooth illumination. DoveNet, RainNet
and Guo et al’s method tend to preserve some of the original
illuminations on the foreground object and struggle to remove
them completely. In addition, D-HT produces over-smooth
results. This may be due to the weighted average operation
in the self-attention mechanism. Lalonde and Efros’ method
produces greenish results that differ from the ground truth.
Our results are more realistic and closer to the ground truth
in terms of both color and shading.
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Fig. 2. More qualitative results of different methods on the sunny test set. We show representative examples with close-up details focusing on shading
variation, color and brightness.
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Fig. 3. More qualitative results of different methods on the cloudy test set. We show representative examples with close-up details focusing on shading
variation, color and brightness.
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Fig. 4. More qualitative results of different methods on the sunrise/sunset test set. We show representative examples with close-up details focusing on shading
variation, color and brightness.
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Fig. 5. More qualitative results of different methods on the night test set. We show representative examples with close-up details focusing on shading variation,
color and brightness.
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TABLE III
ABLATION STUDY ON GAB.

fPSNR↑ fSSIM↑
Shading Bases Module w/o GAB 30.75 0.928
Shading Bases Module 31.35 0.936

B. More Results from User Study

In Fig. 6, we present more results from user study. First of
all, the state-of-the-art methods [2], [3], [6], [7] mainly change
the brightness and color of the foreground, but cannot change
the shading of the foreground. In contrast, our method can not
only perceive the illumination in the background image but
also generate the corresponding foreground shading, as shown
in close-up details of Fig. 6(a)(b)(c). Second, these methods
tend to transfer the brightness and color of background ob-
jects to the foreground without perceiving the illumination
information in the scene. Note that the pixel values in the
background image reflect the combined effect of background
objects and illumination. From a physical point of view, we
should extract the illumination information in the background
scene rather than only the brightness and color information of
the background images. Taking the Fig. 6(e) as an example,
Lalonde [6], RainNet [3] and DIH-GAN [7] transfer the color
of the grass to the foreground to make it appear green, which
is unreasonable.

C. Ablation Study on GAB

Quantitative results of ablation study on GAB are shown in
Tab. III. It can be seen that the performance of the Shading
Bases Module (K = 32) with GAB is better than that
without GAB, in which fPSNR increases by 0.6dB and fSSIM
increases by 0.008. Note that the reported metrics (fPSNR,
fSSIM) are obtained by comparing the results generated by
our Shading Module against the corresponding ground truth
shading images.
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Fig. 6. More qualitative results of different methods on the real data. We show representative examples with close-up details focusing on shading variation.
For example, as shown in close-up details of Fig. 6(a)(b)(c), our proposed method is able to generate plausible shading that conforms to the background
illumination. In contrast, the SOTAs still preserve the original illumination effects. Note that Bao et al. [7] only provide the results with a 256x256 resolution.


