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SIDNet: Learning Shading-aware Illumination
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Abstract—Image harmonization aims at adjusting the appear-
ance of the foreground to make it more compatible with the
background. Without exploring background illumination and its
effects on the foreground elements, existing works are incapable
of generating a realistic foreground shading. In this paper, we
decompose the image harmonization task into two sub-problems:
1) illumination estimation of the background image and 2) re-
rendering of foreground objects under background illumination.
Before solving these two sub-problems, we first learn a shading-
aware illumination descriptor via a well-designed neural render-
ing framework, of which the key is a shading bases module that
generates multiple shading bases from the foreground image.
Then we design a background illumination estimation module to
extract the illumination descriptor from the background. Finally,
the Shading-aware Illumination Descriptor is used in conjunction
with the neural rendering framework (SIDNet) to produce the
harmonized foreground image containing a novel harmonized
shading. Moreover, we construct a photo-realistic synthetic image
harmonization dataset that contains numerous shading variations
with image-based lighting. Extensive experiments on both syn-
thetic and real data demonstrate the superiority of the proposed
method, especially in dealing with foreground shadings.

Index Terms—Image Harmonization, Illumination, Shading
Field, Neural Rendering.

I. INTRODUCTION

G IVEN a composite image of which the foreground and
background taken from different images, image harmo-

nization aims to adjust the appearance of the foreground to
make it compatible with the background. A lot of works
[1]–[8] have been proposed to solve the inharmony problem
in the composite image. As shown in Fig. 1, these image
harmonization methods, however, tend to focus on adjusting
the low-level statistics (i.e., color and brightness) of the
foreground rather than its shading.

The failure to model shadings can be attributed to the lack of
a comprehensive understanding of the background illumination
and its effects on the foreground elements, especially the
direction and distribution of illumination cannot be perceived
by these methods. In particular, learning-based approaches,
such as [1], [2], [6], [8], are generally formulated as the image-
to-image translation task where the illumination is implicitly
transferred from the background to the foreground. Moreover,
existing large-scale image harmonization datasets [1], [6] are
devoid of perceivable shading variations. It is questionable
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whether or not the networks trained with these datasets could
deal with shading variations.

Collecting, processing, and distributing real-world datasets
is often associated with data gathering costs, quality problems,
and privacy concerns. Recently, researchers have turned to
synthetic data as an adequate solution in the face of the
numerous data-related challenges posed by real-world data
and the requirements of recent AI technologies [1]. Several
color transfer algorithms [9]–[12] have been used to generate
visually acceptable images with varying colors and brightness.
However, the shading variation, which is also important for
image harmonization, has not been taken into consideration.
To this end, we construct a large-scale photo-realistic image
harmonization dataset that contains color, brightness and shad-
ing variations with image-based lighting [13]. Unlike existing
synthetic datasets [7], [14] of which the foreground objects or
the illumination maps are created by CG software, we refer
to real models/illumination captured from the real world, with
the aim of achieving photo-realistic renderings.

In this paper, we propose to decompose the image harmo-
nization task into two sub-problems: (1) illumination estima-
tion of the background image, and (2) re-rendering of fore-
ground objects under background illumination. The general
lighting representation (i.e. illumination maps [15]) that is able
to record the complete illumination (including the directional
information) can be used to solve sub-problem (1). However,
using such a representation brings considerable challenges due
to its large number of parameters. Our key to solving (1) lies
in the proposal of an efficient illumination representation with
fewer parameters that also can retain directional information.
For sub-problem (2), in contrast to the spherical harmonics
lighting model [16], we intend to render complex global
illumination effects such as cast shadows to further improve
the realism of the composite image.

To achieve these ends, we propose a novel Neural Rendering
Framework that accounts for global illumination effects while
learning a shading-aware illumination descriptor from the illu-
mination maps. Its key component is a neural Shading Bases
Module, which is utilized to generate multiple shading bases
from the foreground image. Each shading basis corresponds to
a specific illumination distribution. It then combines with the
illumination descriptor, which is encoded by an Illumination
Encoder Module, to render a shading image. We propose
to reconstruct the shading image as a pretext task in order
to simultaneously supervise the learning of both the shading
bases and the illumination descriptor. Note that the GT shading
image is automatically generated by a path tracing algorithm,
and also contains global illumination effects.
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Fig. 1. Given a composite image (a) of which the foreground and background taken from different images, our proposed method is able to produce the
harmonized image (e) containing a novel foreground shading (f) that conforms to the background illumination. In contrast, existing methods [1], [2] only
adjust the brightness and color of the foreground. Here, for both methods, we use their publicly released pre-trained models.

Once we pre-define the shading-aware illumination descrip-
tor, the illumination of the background image could be esti-
mated via the proposed Background Illumination Estimation
Module and then is used in conjunction with our Neural
Rendering Framework to generate the harmonized foreground
image which contains a harmonized shading. We name this
novel Shading-aware Illumination Descriptor-based image har-
monization Network SIDNet.

Our contributions can be summarized as follows:
(1) We propose a neural Shading Bases Module, which de-

composes the shading field into multiple shading components,
to generate a novel foreground shading using the estimated
illumination descriptor. To the best of our knowledge, this
is the first of its kind to explicitly model shadings in image
harmonization.

(2) We design a novel Neural Rendering Framework to learn
the shading-aware illumination descriptor from the illumina-
tion maps in a self-supervised manner.

(3) We provide a large-scale photo-realistic synthesized
image harmonization dataset containing challenging shading
variations.

II. RELATED WORK

In this section, we briefly discuss existing works related to
image harmonization. In addition, image relighting methods
relevant to the proposed work are also included.

A. Image Harmonization

Traditional image harmonization methods [3], [4], [9], [11],
[17]–[21] focus on matching low-level statistics between im-
ages. The pioneer work [9] matched the means and variances
of the color histograms between images in a decorrelated
color space. Lalonde and Efros [3] then combined global
color statistics obtained over a large natural image set and
local color statistics to improve the realism of the composite
images. Sunkavalli et al. [21] proposed to match contrast,
texture, noise, and blur of visual appearance using multi-scale
pyramid representations to produce realistic composites. Xue
et al. [4] identified key statistical measures that most affected

the realism of a composite image. However, the adjustment of
low-level statistics can not handle shading variations.

In the past few years, researchers have concentrated on deep
neural network-based approaches for image harmonization
[1], [2], [5], [6], [8], [22]–[25]. Zhu et al. [5] proposed a
CNN-based classifier model for the perception of realism to
guide a traditional color adjustment method to produce more
realistic outputs. The first end-to-end CNN model for image
harmonization was proposed by Tsai et al. [6]. These methods
usually formulate image harmonization as an image-to-image
translation task by ensuring visual consistency between the
foreground and the background in different aspects, such as
the domain consistency [1], [26], the visual style consistency
[2], [27], and the reflectance/illumination consistency [8], [14].
Furthermore, the attention [28], [29] or self-attention [30]
mechanism is applied to improve the realism of the composite
images. However, without considering the physical principles
of image formation, learning-based methods lack the percep-
tion of illumination information in the background image,
especially the direction of illumination. This inevitably leads
to their inability to generate a realistic foreground shading,
which severely degrades the realism of the composite images.

B. Image Relighting

Traditional image-based relighting methods [31]–[33] di-
rectly reconstruct the light transport function to relight the
objects using multiple images under different illumination
conditions. Note that the illumination here is always explic-
itly provided. Recently, several deep neural networks with
illumination estimation modules [34]–[39] are proposed to
relight objects of a specific class (e.g., portraits and human
bodies) using a single RGB image. Still, the illumination
estimation is only considered for specific objects rather than
the natural scenes. Given multi-view images, Yu et al. [40]
proposed the first single image-based outdoor scene relighting
method along with lighting estimation for the scene. They
used spherical harmonics lighting model [16] to generate the
shading. However, it could not handle global illumination.
Moreover, it is worth noting that although these relighting
methods [34]–[40] with illumination estimation can be applied
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Fig. 2. The pipeline of constructing the pair of harmonized image and unharmonized image. It mainly covers data collection, rendering, and object placement.
To train the proposed model, shading and albedo are also rendered.

to image harmonization, additional computational overhead
would be also introduced, since illumination estimation for
the background image is often accompanied by meanwhile
estimating other physical attributes in the background image.
In other words, these relighting methods are not specifically
designed for image harmonization.

III. IMAGE HARMONIZATION DATASET

The goal of our image harmonization dataset is to introduce
a new challenging benchmark with photo-realistic synthesized
images and plentiful variations (color, brightness, and shading)
to the community of image harmonization. The pipeline of
constructing the pair of harmonized image (ground truth) and
unharmonized image is illustrated in Fig. 2. Below we intro-
duce the construction process, which covers data collection,
rendering and object placement.

A. Data Collection

To construct our dataset, we collect both high-quality 3D
human models and high dynamic range (HDR) illumination
maps. The collected 3D models are acquired from [41] using
photogrammetric 3D scanning methods. A rich variety of
humans are included, with the diversity across genders (male,
female), ages, poses, and clothing (colors, accessories). We
collect a total of 138 high-quality 3D humans, of which 120
are used for training and 18 for testing.

Our illumination maps are collected from the internet source
Poly Haven [42] and HDR MAPS [43], which offer diverse
high dynamic range panoramic images. Fig. 3 shows the
t-SNE visualization of our illumination maps. We mainly
select outdoor illumination maps, resulting in a total of 318
high dynamic range panoramic images. In order to generate
images with different kinds of variations (color, brightness,
and shading), we ensure that the selected illumination maps
are diverse across weather conditions (sunny, cloudy, and
overcast), illuminant colors, time of the day, and locations.

Fig. 3. The t-SNE visualization of our collected illumination maps, which
contain diverse weather conditions, illuminant colors, time of the day, and
locations.

From the 318 images, 191 images are used for training and the
remaining 127 ones are reserved for testing. All the selected
illumination maps come with the resolution of 8k, which are
resized to 2k before rendering.

B. Rendering

To generate training and test images, we use Blender [44]
with Cycle Renderer. Each object is first placed on a planar
surface within Blender’s environment. We then randomly sam-
ple (without replacement) half of the images as illumination
maps. For each possible pair of object and illumination map,



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

Sky dome (i.e. 

illum. map)

ObjectCamera



x
y

z

.

(a)

0

.

2

Illum. map

Bg. img

(b)

.0
0

2



2−

Fig. 4. The Blender rendering system (a) and the cropping horizontal center
α of the illumination map for the background image (b).

we randomly sample 4 rotation angles from a pre-defined
set of 8 angles, ranging from 0 to 360 degrees with an
increment of 45 degrees. The sampled angles are used to rotate
both the object and the illumination map, resulting in a total
of 16 path-traced images per object. This process increases
the richness of object poses and provides sufficient shading
variations for our model to learn. Specifically, as shown in
Fig. 4(a), a Blender rendering system includes three parts:
a sky dome, a camera, and an object. We randomly select
one illumination map as the sky dome. In order to generate
various shading variations on the foreground object, we need
to first rotate the illumination map by a randomly sampled
angle, and then render a foreground image. Assume that the
horizontal coordinate of the rotated illumination map pointed
by the camera is α at this time. As shown in Fig. 4(b), the
illumination map must be cropped with α as the horizontal
center to obtain the background image to ensure the illumina-
tion consistency between the rendered foreground image and
the background image. In the next subsection, this illumination
consistency enables the foreground image to be placed within
the background image.

For each object, we generate path-traced images, shading
images, albedo images, and foreground masks, which are all
rendered with 480 × 640 resolution. About 200∼300 samples
per pixel are used for generating path-traced images.

C. Object Placement

The location of an object within an image conveys important
clues for image harmonization. Here, object placement and
tuple building for training and test sets will be elaborated.
We assume that all objects are placed on planar surfaces.
To distinguish between planar and non-planar surfaces within
an image, we manually annotate the planar surface in the
illumination map from which the background image will be
extracted.

For a given background image extracted from an illumi-
nation map using a virtual perspective camera, we randomly
select a pixel belonging to the annotated planar surface. Note
that we discard the background images that do not contain
the annotated plane surface. We then crop the rendered object
as the foreground image and select one image corner as
the reference point. Finally, we randomly resize the cropped
object and compose it with the background image, so that the
reference point uses the randomly selected pixel.

Fig. 5. High-quality examples from our constructed dataset. Red and green
insets in the bottom row indicate that our dataset contains challenging shading
variations.

To create the training and test tuple, we first select a
rendered image of an object and its corresponding illumination
map. We then rotate the illumination map based on the
angle used for rendering and extract an image crop (back-
ground image) using a virtual perspective camera. Here, a
standard gamma tone mapping (γ = 2.2 ) is also applied
to the illumination map before extracting the background
image. Lastly, we perform object placement and compose
foreground/background images as described above. The same
procedure is used to create unharmonized and harmonized
images, only the unharmonized image contains the same object
rendered under a different illumination. Fig. 5 shows some
representative examples from our constructed dataset.

D. Dataset Summary
Our dataset has a total of 143,390 training images and

22,048 test images, which cover a wide range of scenes
and illumination conditions. We further split the training set
and the test set into four categories based on illumination
conditions as reported in Tab. I. The binary foreground (object)
mask is also provided for each image.

IV. METHOD

We decompose the image harmonization task into two
sub-problems: (1) illumination estimation of background im-
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Fig. 6. An overview of our proposed image harmonization method. Our method has two training stages: training the Neural Rendering Framework (NRF)
and training the Background Illumination Estimation Module (BIEM). The key to the first stage is to learn a shading-aware illumination descriptor, which is
then estimated from the background image in the second stage. During inference, our image harmonization pipeline combines partial modules of the NRF
{f, h, r} and the BIEM q to adjust the foreground appearance using the estimated background illumination l̂.

TABLE I
THE NUMBER OF TRAINING AND TEST IMAGES ON EACH SCENE.

Scene Sunny Sunrise/Sunset Cloudy Night All
#Train 62,074 27,471 48,051 5,794 143,390
#Test 10,472 3,608 7,508 460 22,048

ages, and (2) re-rendering of foreground objects. The over-
all pipeline of the proposed image harmonization algorithm
is illustrated in Fig. 6. We first train a Neural Rendering
Framework to learn the shading-aware illumination descriptor
in a self-supervised manner (Sec. IV-A). Then we train a
Background Illumination Estimation Module to estimate the
shading-aware illumination descriptor from the background
image (Sec. IV-B). The inference pipeline of image harmoniza-
tion is briefly introduced in Sec. IV-C. Finally, we elaborate
on the training and implementation details in Sec. IV-D.

A. Neural Rendering Framework

As shown in Fig. 6(a), the Neural Rendering Framework is
composed of three neural network modules and one rendering
module. First, the Shading Bases Module and the Illumination
Encoder Module generate the shading using the input fore-
ground image and the illumination map. Then, the Albedo
Estimation Module makes an estimate of the albedo from
the input image. Finally, the Rendering Module combines
the albedo feature, the shading, the background image and
the input image to re-render the input image under a novel
illumination. Below we describe these modules in detail.

Shading Bases Module. Inspired by the illumination cone
theory [45], the Shading Bases Module f , parameterized by
θf , is designed to generate a set of K shading bases SB ∈
RK×H×W , given the input foreground image Ĩ ∈ R3×H×W ,

SB = f(Ĩ; θf ). (1)

The Shading Bases Module, based on a U-Net architecture
[46], consists of a downsampling sub-module and a upsam-
pling sub-module. The downsampling sub-module is mainly
composed of a series of Residual Dense Blocks [47] (RDBs)
followed by max-pooling layers. The upsampling sub-module
is composed of several convolution layers and upsampling
layers. In addition, we utilize the Global Attention Block
(GAB) at the bottleneck of the downsampling sub-module to
imitate long-range interactions between distant pixels in global
illumination. The GAB is composed of 6 transformer layers
[48].

Illumination Encoder Module. The purpose of the Illumi-
nation Encoder Module g is to encode the illumination map
L ∈ R3×H′×W ′

as a low dimensional illumination descriptor
l ∈ R3×K ,

l = g(L; θg), (2)

where K ≪ H ′ × W ′. In addition, in order to simulta-
neously perceive shading and illumination distribution, our
illumination descriptor combines different shading bases to
generate the final shading Ŝ ∈ R3×H×W which contains
global illumination effects,
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Ŝcij =

K∑
k=1

lck × SBkij . (3)

The network architecture of the Illumination Encoder Mod-
ule is similar to the downsampling sub-module of the Shading
Bases Module. The only difference is that the transformer
layers are replaced by three fully-connected layers for out-
putting the illumination descriptor, which further reduces
the amount of network parameters. Note that the first two
fully-connected layers are both followed by a rectified linear
activation function.

Albedo Estimation Module. The Albedo Estimation Mod-
ule h is designed to extract the albedo feature Fa ∈ RC×H×W

from the input foreground image Ĩ ,

Fa = h(Ĩ; θh). (4)

Then, one convolution layer t that takes Fa as input is adopted
to estimate the albedo Â ∈ R3×H×W : Â = t (Fa; θt).

The network architecture of the Albedo Estimation Module
is the same as that of the Shading Bases Module without GAB.
In addition, the channel number of RDBs is reduced by half.

Rendering Module. After obtaining the albedo feature
and the shading, the Rendering Module r performs the final
rendering,

Î = r(Fa, Ŝ, Ĩ, B; θr), (5)

where B denotes the background image. In order to preserve
details in the foreground, the input image Ĩ is also fed to the
Rendering Module. Note that the output image Î shares the
same content with the input image Ĩ but under a different
illumination condition L.

The network architecture of the Rendering Module is the
same as that of the Albedo Estimation Module.

B. Background Illumination Estimation Module

Once we have obtained the shading-aware illumination
descriptor via the Neural Rendering Framework, the goal of
the Background Illumination Estimation Module q, which is
shown in Fig. 6 (b), is to estimate the illumination descriptor
given the input background image,

l̂ = q(B; θq). (6)

The Background Illumination Estimation Module (BIEM)
shares the same network architecture with the Illumination
Encoder Module (IEM). However, there are two main differ-
ences between BIEM and IEM. First, the inputs of IEM and
BIEM are different. As shown in Eq. 2 and Eq. 6, the input
of IEM is the illumination map L, while the input of BIEM
is the background image B. Note that the illumination map
is not available in the inference stage of image harmonization
and only the background image is used. Second, the key to
the first training stage is to train an IEM to compress a high-
dimensional illumination map into a low-dimensional shading-
aware illumination descriptor. Once the first training stage is
finished, the pre-trained IEM will be later used in the second
training stage to supervise the training of the BIEM. In other

words, we use the BIEM to estimate an illumination descriptor
from a background image, where the ground-truth illumination
descriptor is provided by the pre-trained IEM.

Refer to the supplementary materials for more implementa-
tion details of all network structures.

C. Image Harmonization Pipeline

As shown in Fig. 6(c), our image harmonization pipeline
consists of two modules, namely Background Illumination
Estimation Module q and Foreground Rendering Module
{f, h, r}.

The Foreground Rendering Module leverages partial mod-
ules of the existing Neural Rendering Framework to re-render
the input unharmonized foreground image to make it more
compatible with the background image.

D. Training Details

We train the model on our image harmonization dataset with
ground truth {I,A, S, L}, where I, A, S denote the harmo-
nized image, albedo and shading respectively. Our training is
divided into two stages: training the Neural Rendering Frame-
work and training the Background Illumination Estimation
Module.

At the first stage, we train the Neural Rendering Framework.
The L1 loss is applied for shading, albedo and the output
image. In addition, inspired by [49], the SSIM metric is
utilized to encourage the neural network to produce visually
pleasing images. Thus, the loss LNR for the Neural Rendering
Framework is defined as,

LNR = ∥S − Ŝ∥1 + ∥A− Â∥1 + ∥I − Î∥1 + λ(1− SSIM(S, Ŝ))

+λ(1− SSIM(A, Â)) + λ(1− SSIM(I, Î)),
(7)

where the weight λ is set to 1 in our experiments.
At the second stage, we train the Background Illumination

Estimation Module. The L1 loss is used for the illumination
descriptor. Also, the predicted illumination descriptor and the
shading bases are utilized to render the shading and then
minimize the error between the rendered shading and the
ground truth shading. The loss LBIE for the Background
Illumination Estimation Module is defined as,

LBIE = ∥l − l̂∥1 +

∥∥∥∥∥S −
∑
k

l̂ck × SBkij

∥∥∥∥∥
1

. (8)

V. EXPERIMENTS

To validate the effectiveness of our image harmonization
pipeline, we first compare our method with several state-of-
the-art methods. Then we compare our neural illumination de-
scriptor against the common illumination representation (i.e.,
HDR illumination maps) and our neural shading bases against
the spherical harmonic bases to demonstrate their advantages
in terms of rendering quality. A user study on real data is
also conducted to confirm the effectiveness of our method.
Finally, we perform extensive ablation studies to illustrate the
contribution of each component of our framework in isolation.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

TABLE II
QUANTITATIVE EVALUATION OF DIFFERENT METHODS ON THE TEST SET. THE BEST RESULTS ARE MARKED IN BOLD. THE SECOND BEST RESULTS ARE

UNDERLINED. OUR METHOD ACHIEVES THE BEST RESULTS ON THE ENTIRE TEST SET WITH THE FEWEST PARAMETERS.

Sub-dataset Evaluation
Metric

Input
Composite

Lalonde and
Efros [3]

DoveNet
[1]

Guo et al.
[8]

RainNet
[2]

D-HT
[30]

CDTNet
[25]

SCS-Co
[27] Ours Ours w/

Illum. map
fMAE↓ 0.099 0.110 0.073 0.076 0.067 0.074 0.091 0.119 0.062 0.055
fPSNR↑ 19.52 18.33 21.38 21.15 22.02 21.47 20.21 17.90 22.61 23.77
fSSIM↑ 0.804 0.787 0.821 0.851 0.831 0.810 0.811 0.757 0.869 0.893Sunny

LPIPS↓ (×e-2) 1.089 2.353 1.111 1.304 0.815 1.114 1.096 3.182 0.791 0.678
fMAE↓ 0.083 0.119 0.071 0.072 0.060 0.070 0.080 0.091 0.061 0.058
fPSNR↑ 21.48 18.07 22.35 22.49 23.60 22.30 21.63 20.34 23.38 23.92
fSSIM↑ 0.873 0.820 0.888 0.892 0.899 0.866 0.882 0.843 0.926 0.941Sunrise/Sunset

LPIPS↓ (×e-2) 0.993 2.249 0.915 1.207 0.685 1.008 1.030 4.316 0.634 0.517
fMAE↓ 0.084 0.101 0.070 0.074 0.063 0.071 0.082 0.089 0.057 0.056
fPSNR↑ 21.75 19.38 22.64 22.24 23.67 22.60 21.81 20.64 24.14 24.21
fSSIM↑ 0.881 0.843 0.899 0.905 0.908 0.873 0.893 0.852 0.935 0.947Cloudy

LPIPS↓ (×e-2) 0.897 1.997 0.772 1.142 0.641 0.918 0.879 4.680 0.558 0.487
fMAE↓ 0.171 0.122 0.085 0.093 0.080 0.098 0.182 0.136 0.088 0.094
fPSNR↑ 16.07 17.65 20.81 20.21 21.41 20.20 15.15 17.34 20.16 19.80
fSSIM↑ 0.701 0.736 0.819 0.821 0.818 0.791 0.690 0.746 0.840 0.849Night

LPIPS↓ (×e-2) 2.078 2.264 1.291 1.777 1.127 1.501 2.154 4.252 1.146 1.105
fMAE↓ 0.093 0.109 0.072 0.075 0.065 0.073 0.088 0.105 0.061 0.056
fPSNR↑ 20.53 18.63 21.95 21.72 22.83 21.96 20.88 19.22 23.21 23.86
fSSIM↑ 0.840 0.810 0.859 0.876 0.868 0.841 0.848 0.803 0.900 0.918All

LPIPS↓ (×e-2) 1.028 2.213 0.967 1.243 0.741 1.038 1.033 3.900 0.693 0.596
Parameters↓ - - 54.756M 40.863M 54.763M 34.299M 2.744M 44.900M 10.403M

A. Experimental Setup

Evaluation metrics. We evaluate the realism of harmonized
images using fMAE, fPSNR, fSSIM [50] and LPIPS [51],
where the prefix f indicates that the metric measurement is
calculated only using the foreground region.

Baselines. We compare with one traditional method [3]
and six deep learning-based methods [1], [2], [8], [25], [27],
[30]. For deep learning-based methods, we select recent open-
source methods [1], [2], [8], [30] achieving state-of-the-art
performance. In addition, Cong et al. [25] provided us with
their code and pre-trained model. For a fair comparison,
we re-train their models on our image harmonization dataset
according to the experiment settings given by the authors. We
report their results when the training losses converge. Refer
to the supplementary materials for more experimental details.
The results of SCS-Co [27] are provided by the authors.

B. Comparison with State-of-the-art

Quantitative results. Tab. II summarizes the quantitative
results obtained by our method as well as the competing
methods. Our method achieves the best results on the sunny
and cloudy scenes, which can be attributed to its ability to
generate realistic shadings. However, our method gets lower
scores on the night scene compared to previous works. This is
primarily due to the fact that the night images lack noticeable
shading variations. Overall, our method achieves the best
performance in all metrics when using the entire test set
for evaluation. In addition, compared with other learning-
based methods, CDTNet specially integrates with the color
mapping module. However, this module cannot handle shading
variations and may result in limited performance. Since SCS-
Co does not consider the perception of illumination and its
training data only contains variations in brightness and color,
its performance is severely degraded on our test data which
also contains shading variations.

We demonstrate the effect of using the illumination maps
as inputs to extract the illumination descriptors. As can be
observed from Tab. II, using the illumination maps as inputs
(ours w/ illum. maps) leads to a significant increase in the
rendering performance.

We also compare our method against the baselines using
the number of parameters. Despite its complexity, our en-
tire framework has a total of 10.403M parameters, which
is approximately one-fifth of the amount of the second-best
baseline with 50.763M parameters.

Qualitative results. Harmonized images produced by dif-
ferent methods are compared in Fig. 7. We display the
qualitative results with different lighting conditions on several
scenes, including sunny, cloudy, sunrise/sunset, and night. Our
method produces compelling results that are closer to the
ground truth in terms of photo-realism. For instance, in the
first column of Fig. 7, there is an observable illumination
inconsistency between the foreground and the background
in the input composite image. Specifically, the background
suggests that the main illumination source is located at the
rear right, whereas, the foreground appears to be illuminated
from the left. The result of Lalonde et al. [3] shows greenish
colors, and all the other comparative methods [1], [2], [8], [25],
[27], [30] basically retain the original illumination (e.g., the
boy neck in close-ups). In contrast, our method consistently
relights the foreground object, making it more consistent with
the background illumination.

In the fifth column of Fig. 7, the foreground object in
the input image appears to be illuminated from the right,
whereas the background is a cloudy image. Ideally, under
such background illumination, the foreground object should
appear smooth lighting. The result of Lalonde and Efros [3]
is inconsistent in terms of both color and illumination. The
results of CDTNet [25] and SCS-Co [27] almost completely
preserve the effect of the original lighting. Although Rain-
Net [2], DoveNet [1], Guo et al. [8] and D-HT [30] produce the
results that are a step closer to the ground truth, the highlights
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Fig. 7. Qualitative comparison of different methods on our test set. We show representative examples with close-up details focusing on shading variations.
Our method outperforms all other approaches with more accurate and sharper results.

on the woman’s left arm are improperly preserved. Our method
not only effectively delights the foreground object, but also re-
renders it under a smooth illumination.

Effects of the inferred shading and albedo. For the
single image harmonization task, there are two challenges: (1)
removing the original illumination on the foreground and (2)
generating the shadings under the background illumination. In
this paper, we design the Albedo Estimation Module and the
Shading Bases Module to solve these two problems respec-
tively. As shown in Fig. 8, our inferred albedos effectively

remove the original illumination effects, and our inferred
shadings correctly contain the effects of the background il-
luminations. As a result, our harmonized images are more
realistic and physically correct. In contrast, those image-to-
image harmonization methods perform poorly on these two
aspects. As shown in Fig. 7(a)(e), for example, the original
light on the boy’s left nose and on the woman’s clothes are
not well eliminated, and even artifacts are introduced in these
areas. Moreover, since neither explicit shading modeling nor
light perception is conducted, these methods fail to generate



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

TABLE III
QUANTITATIVE COMPARISON OF DIFFERENT ILLUMINATION

REPRESENTATIONS FOR IMAGE HARMONIZATION ON THE TEST SET.

fMAE↓ fPSNR↑ fSSIM↑ LPIPS↓

HDR illum. map 0.097 19.91 0.858 0.017
Our illum. descriptor 0.061 23.21 0.900 0.007

plausible shadings.

Fig. 8. Visualization of our intermediate results. Note that our inferred albedos
effectively remove the original illumination effects, and our inferred shadings
correctly contain the effects of the background illuminations.

C. Comparison with HDR Illumination Map

The efficacy of our learned illumination descriptor is com-
pared with the HDR illumination map for light estimation.
Specifically, we train an encoder-decoder based neural network
to map the background image to its corresponding panoramic
HDR illumination map. We train this network until its loss
converges. Then, we use it to estimate the HDR panoramic
image from the background image. The estimated HDR image
is further used as part of our Neural Rendering Framework.
The rendered images are compared against those generated
using our learned illumination descriptor, which is reported in
Tab. III. Note that our learned illumination descriptors achieve
obviously better performance compared to the estimated HDR
images. In fact, it is very difficult to accurately estimate the
HDR illumination map from the background image due to its
huge amount of parameters.

Fig. 9. Comparison with Spherical Harmonic bases.

D. Comparison with Spherical Harmonic Bases

In Fig. 9, we compare our shading bases against the
Spherical Harmonics (SH) bases [16]. Our main objective is to
emphasize the advantage of our shading bases in comparison
to the SH bases in terms of generating cast shadows.

We generate the first 4 SH bases Ylm (with (l,m) = {(0,0),
(1,-1), (1,0), (1,1)}, where l ≥ 0 and −l ≤ m ≤ l) for
comparison. (0, 0) indicates ambient illumination and has no
specific illumination direction. (1,−1), (1, 0) and (1, 1) show
that the light source is located below, behind and to the left
of the little girl, respectively.

For this experiment, we set K of the Shading Bases Module
to 4. We visualize the shading bases learned by our Shading
Bases Module in Fig. 9, where k is used to denote the kth
shading basis. The values k = 0, 1, 2, 3 indicate that the light
source is located behind, in front, to the right, and to the left
of the little girl, respectively.

In comparison to the SH bases, our shading bases contain
the cast shadow effects which are explicitly omitted by the
spherical harmonic bases. Taking the last column of Fig. 9
as an example, both our shading basis and the spherical
harmonics basis are illuminated from the right. From the
close-ups in Fig. 9(a), it can be observed that the shoulder
region is occluded by the head. Spherical harmonics however
produce bright intensities without cast shadows. While our
shading bases contain cast shadows that are congruent with
the illumination direction, as shown in the close-ups.

E. User Study on Real Data

We also conduct user study on real data to validate the
performance of our proposed method. We made 58 composite
images of which both the foreground images and the back-
ground images are collected from the Internet. Specifically,
foreground humans are collected from Taobao [52] and cap-
tured by real cameras for clothes display. The background
images are collected from Poly Haven [42] and HDR MAPS
[43], which are all captured by professional digital cameras.
We will make this benchmark dataset publicly available. For
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Fig. 10. Qualitative comparison of different methods on real data across different weather conditions. The details in red boxes show that our method is
capable of generating plausible shadings which are consistent with the background illumination, while other methods can only adjust the color and brightness
of the foreground.

deep learning-based methods, we compare against the state-of-
the-art methods, namely DoveNet [1], RainNet [2], DIH-GAN
[14], CDTNet [25], SCS-Co [27], Guo et al. [8] and D-HT
[30]. Note that for DoveNet, RainNet, CDTNet, Guo et al. and
D-HT, we use their released pre-trained models to process the
input composite images. The results of DIH-GAN and SCS-
Co are provided by the authors. We also compare against the
traditional method proposed by Lalonde and Efros [3]. For
each composite image processed by these nine methods, we
ask 27 individuals to score the visual quality. As inspired
by [24], the following three questions are considered for

scoring: (1) Are the brightness and color of the foreground
and background consistent; (2) Are the illumination directions
of the foreground and background consistent; and (3) Are
the texture distortions/artifacts of the foreground serious. The
visual quality score ranges from 0 to 3 (worst to best quality).
Tab. IV reports the results. It shows that we achieve a large
advantage on question 2, which is mainly due to the fact
that neither previous methods [1], [2], [8], [25], [30] nor
their corresponding training data have yet considered shading
variations. Besides, the recently proposed DIH-GAN [14] does
not explicitly model foreground shading, and many of their
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3D models are created by CG software, which results in poor
generalization to real data. As shown in Fig. 10, the details in
red boxes show that our method is able to generate foreground
shadings that are consistent with the background illumination.
In contrast, other methods fail to generate plausible shading
and even erroneously transfer the color of the background
objects (e.g., the grasses) to the foreground due to the lack
of perception of the illumination in the background.

TABLE IV
USER STUDY ON REAL DATA.

Score (Q1) Score (Q2) Score (Q3) Overall Score
Lalonde and Efros [3] 0.987 1.084 1.893 1.322
DIH-GAN [14] 1.293 1.466 1.017 1.259
DoveNet [1] 1.670 1.480 1.883 1.678
RainNet [2] 1.636 1.469 1.720 1.608
Guo et al. [8] 1.512 1.477 1.633 1.541
D-HT [30] 1.656 1.494 1.901 1.684
SCS-Co [27] 1.645 1.473 1.897 1.672
CDTNet [25] 1.749 1.497 1.912 1.719
Ours 2.051 1.915 1.981 1.982

F. Generalization to Indoor Scenes and Non-Human Objects

Fig. 11 shows the generalization of our method to indoor
scenes. First, our method is able to perceive illumination
for indoor scenes, especially the illumination direction. For
example, in Fig. 11 (b), the background image indicates that
the primary light source in the scene comes from the right
side (i.e., the windows), and our generated shading (e.g., the
details in the red box) is consistent with the direction of the
primary light source in the scene. Second, as shown in Fig. 11
(a), our result, especially the details in the blue box, is more
realistic owing to the appropriate illumination brightness and
color. This can also be observed in Fig. 11 (c).

However, our method does not yet account for spatially
varying illumination estimation which can further improve the
realism for indoor scene harmonization. In the future, one of
the potential solutions is to estimate an illumination descriptor
for individual background image pixel.

Fig. 12 shows the generalization of our method to non-
human objects. Although the constructed training set only
covers human objects, our approach generalizes well to non-
human objects, specifically generating reasonable shadings
that are consistent with the target background lighting. For
example, in the second row of Fig. 12, it can be observed from
the background image that the sun is located behind the right
side of the toy car. Not only is our harmonized toy car mostly
backlit, but its right side is partially illuminated by the sun,
as shown in the blue box. In addition, adding more different
types of objects to the training set could further improve the
generalization performance of the proposed method.

G. Ablation Study

The ablation study is conducted to demonstrate the effec-
tiveness of each component on the Neural Rendering Frame-
work (NRF).

Neural rendering framework Ablation. We demonstrate
how the use of the albedo features Fa, the input unharmonized
image Î and the background image B as additional inputs to

Fig. 11. Generalization to indoor scenes. Zoom in for more details.

Fig. 12. Generalization to non-human objects.

the Rendering Module can improve the overall performance.
We also perform an ablation on the loss function of our Neural
Rendering Framework. Quantitative results are reported in
Tab. V.

We start with the baseline NRF which uses the concate-
nated shading and albedo as inputs to the Rendering Module.
Replacing the albedo image with the albedo feature Fa results
in better performance. We attribute this improvement to the
albedo feature Fa which contains richer information.

We then proceed to add the input unharmonized image Î
in conjunction with the albedo feature Fa and the shading
as inputs to the Rendering Module, and observe a slight
improvement in performance. The delighting, which occurs
as a consequence of albedo estimation, can result in a loss
of information in the final rendered image. Therefore, using

TABLE V
ABLATION STUDY ON NEURAL RENDERING FRAMEWORK.

fPSNR↑ fSSIM↑ LPIPS↓ (×e-2)

Baseline NRF 22.63 0.893 0.775
Baseline NRF + Fa 23.25 0.897 0.735
Baseline NRF + Fa + Î 23.18 0.901 0.704
Baseline NRF + Fa + Î + B 23.82 0.906 0.647
Baseline NRF + Fa + Î + B + SSIM loss 23.86 0.918 0.596
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TABLE VI
EFFECTS OF THE NUMBER OF SHADING BASES (K).

K 4 8 16 32 64 128

fPSNR↑ 29.44 30.81 31.21 31.35 31.42 31.41
fSSIM↑ 0.919 0.931 0.935 0.936 0.937 0.937

the unharmonized image Î as additional input can make up
for the lost information. When the background image is also
added to the Rendering Module, there is a moderate increase
in performance. In fact, by exploiting the brightness and color
information of the background image, the Rendering Module
is able to generate the foreground appearance more accurately.

Finally, in addition to the L1 loss of the baseline NRF, the
SSIM loss function is added. Experimental results show that
adding the SSIM loss significantly improves the performance
of our framework, especially in terms of the foreground SSIM
(fSSIM) and LPIPS metric measurements.

Fig. 13. Effects of the number of shading bases.

Effects of the number of shading bases (K).
To measure the influence of the number of shading bases on

the performance of our Shading Bases Module, we train the
Shading Bases Module with 6 different values of K (4, 8, 16,
32, 64, 128). The results are reported in Tab. VI. We also visu-
alize them in Fig. 13. Note that the reported metrics (fPSNR,
fSSIM) are obtained by comparing the results generated by
our Shading Bases Module against the corresponding ground
truth shading images. There exists a significant increase in the
performance when the value of K increases from 4 to 32, then
the increase becomes less obvious when K > 32. To balance
between the rendering performance and the computational
complexity, we resolve to use K = 32 as the optimal number
of shading bases.

H. Discussions
Impact of object placement. Object placement aims to

place the foreground within the background image with a
suitable location and size. From the view of physical image
formation, the most important factor affecting image harmo-
nization is the location of objects. Because different locations
may have different lighting, depending on the type of scene.
Especially in indoor scenes, the lighting at different locations
may vary greatly. Therefore, the acquisition of illumination
at different locations in scenes and its accurate estimation
pose a greater challenge to image harmonization. In the near
future, we will continue to focus on image harmonization with
spatially-varying lighting estimation.

VI. CONCLUSIONS

In this paper, we have contributed a large-scale photo-
realistic image harmonization dataset involving variations in
color, brightness, and shading. In addition, a novel Neural
Rendering Framework is designed to learn a shading-aware
illumination descriptor from the illumination maps. A neural
Shading Bases Module is proposed to generate the foreground
shading using the shading-aware illumination descriptor esti-
mated from the background. Extensive experiments on the self-
constructed dataset and real data demonstrate the effectiveness
of our proposed method.

Limitations. This work has several limitations that can be
further improved. At now, we focus on one specific object type
(i.e. human body), which limits the application scope of our
method. Extending to different types could improve the ability
to generalize across a wide spectrum of objects. Additionally,
only Lambertian objects are considered. When introducing
the specular BRDFs [53], our model could be applied to the
objects with specular reflection.
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